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TECHNICAL NOTE k037

STABILITY OF IAMTNAR BOUNDARY IAYER NEAR A STAGNATION
POINT OVER AN IMPERMEABIE WALL AND A WALL
COOLED BY NORMAL FLUID INJECTION

By Morris Morduchow, Richard G. Grape,
and Richard P. Shaw

SUMMARY

Minimum critical Reynolds numbers for laminsr instabllity of two-
dimensional stagnation flows over a wall cooled by normal fluid injection
are determined theoretically. The individusl as well as the net effects
of wall temperature and normal fluid injection on the stability charac=-
teristics of the laminar boundary layer are thereby investigated. In
order to study the effect of the favorable pressure gradient in this type
of flow, comparison is made between results of calculations obtained
herein and results of similar cslculetions for the flow over a flat plate.
A comparison of varlous stability criteria is included, and, for certain
cases of normal mess-flow injection, a slight appropriate extension in
the approximaete stability criteris 1s made.

A particularly interesting result obtalned here is that, at fixed
zerc or low rates of fluid injection, the stabllizing effect of cooling
of the wall is much greater for the flow over a flat plate than for the
stegnation flows. In fact, over a highly cooled wall with zero or low
rates of injection, the stagnation flows were found to have a minimm
criticael Reynolds number based on momentum thickness lower than that of
the corresponding flat-plate flows.

INTRODUCTTON

The purpose of this study is to investigate theoretically the sta-
bility of the laminar boundary leyer in flow with an axial pressure gra-
dient over & wall cooled by normel fluid injection. In particular, the
separate as well as the simultaneous or net effects of wall temperature,
of & small normel mass flow at the wall, end of a pressure gradient on
the stability characteristics are determined. Such an investigation is
of practical interest in connection with, for example, the transpiration,
or sweat cooling, of rocket walls, turbine blades, and airfolils. A study
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of the stabllity of the leminar boundery layer is of practical interest
since, at least under conditions of a low free-stream turbulence, inste-
bility of the laminar boundery layer appears to be a necessary condition
for transition to turbulence. The main advantages of maintaining & lemi-
nar boundary leyer under these conditions would be & relatively low skin
friction (provided that separation does not occur, cf. ref. 1) and a
relatively low required normel mass flow of the coolant to maintasin a
given wall temperature.

The simultaneous effect of cooling of the wall and of a small nor-
mal mess flow at the wall is of especlal interest, since the separate
effects tend to oppose each other. In particulsr, lowering the wall tem-~
perature tends, by itself, to stabilize the leminer boundary layer, while
a normal mass flow et the wall has, by itself, a destebilizing effect.

It is therefore significent to determine under which conditions and to
what extent the net effect of transpiration cooling is stablllizing or
destabilizing.

The stability of the laminar boundary layer hes already been studied
to an apprecisble extent in the literature, but most of the studies have
been carried out for an impermesble wall, that is, for zero normal mass
flow at the wall. A survey (as of 1952) of theoretical and experimental
results releted to such studies can be found in reference 2, while theo-
retical results of additional and later studies are summarized in refer-
ence 3. The earliest stability investigations of flow with normal mass
flow at the wall were concerned with the effects of suction. References L
to 6 show the stabilizing effect of suction in increasing the minimum
critical Reynolds number of the incompresslble laminar boundary layer over
a flat plate with uniform suction and with & suctlion velocity ilnversely
proportional to the square root of the distance from the leading edge.

The laminar-boundary-leyer solutlons used for this purpose were the exact
or numerical solutlons obtained in references T and 8.

Investigations of the stabllity of flows with normal fluld injection
have been made in references 9 to 1ll. In reference 9, the stability of
the laminsr boundery layer over a flat plate with a transpiretion-cooled
wall maintalned &t a uniform temperature is studied. Although the flow
is here essentially at low speeds (zero or negligible Mach number), den-
sity and temperature varistions in the flow are taken into account. The
Injection velocity at the wall 1s assumed to vary inversely as the square
root of the distance from the leading edge, and it is shown that by a sim-
ple transformation the incompressible solutions of reference T can be
applied. Results for the minimum critical Reynolds number show explicitly
the stabillizing effect of coollng of the wall and the destabilizing effect
of normal fiuld injection. In reference 10, the compressible flow over a
flet plate, with nonzero Mach number and uniform mass f£low (both suction
and injection) at the wall, is considered. The boundary-lasyer solutions
used are, however, obtained by means of the Kermén-Pohlhausen method in
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conjunction with fourth-degree velocity profiles and may, therefore,

yield sppreciable quantitaetive errors in the stability calculastions (cf.,
e.g., ref. 12). Reference 11, which is quite recent, presents and employs
exact flat-plate boundary-layer solutions which are essentially an exten-
sion to high-speed flows, that is, to nonzero Mach numbers, of the solu-~
tions used in reference 9. The use of liquid air and water as well as of
air as coolants is studied. The stabllity calculations in reference 11
consist in determining the (uniform) wall temperature as a function of
Mach number and of the injection mass-flow parameter required to stabilize
completely the lsminar boundary layer. These results may be considered as
extensions to flow over a flat plate with normel fluid injection of the
corresponding results of references 13 and 14 for an impermeable flat
plate. The destabilizing effect of the normsl fluid injection is illus-
trated here by its effect in lowering, for a given (supersonic) Mach num-
ber, the wall temperature required to stabilize the flow completely. Ref-
erence 15 contains results of stability calculations for incompressible
flow in a pressure gradient with suction or injection, based on Schlichting's
one-parsmeter integral method. The emphasis here is on the effect of a
change in boundery-layer thickness on the stability of the laminsr boundary
layer.

In all of the foregolng research, except reference 15, on stability
of laminar flows with normal mass flow at the wall, only the case of a
zero pressure gradlent (such as flow over & flat plate) has been consid-
ered. In the present investigation, the effect of a pressure gradient is
taken into account by treeting two-dimensional flows in the viecinity of &
forward stagnation point over a transpiration-cooled wall. Such flows are
not only of theoretical interest, but are also of practical interest,
slnce they occur, for example, near the leading edge of a blunt-nosed
object in subsonic flow. Moreover, accurate boundary-layer solutions for
such flows have been derived and are tabulated in references 16 and 17.
These tebulations are particularly suitable for the stability calculations
to be performed here, since they include values of the first and eecond
derivatives of the velocity and temperature profiles. The flows conside-
ered here are low-speed or zero Mach number flows, but they are neverthe-
less compressible in the sense that density and temperature variations are
taken into account. In order to determine properly the effect of the
favorable pressure gradient inherent In the stagnation flows, the stability
calculations have also been performed for the flow over a flat plate, with
essentlally the same values of wall-temperature and injection-mass-flow
parameters. The corresponding laminsr-boundary-layer solutions for flow
over a flat plate are also tabulated in reference 16. By calculating the
minimum critical Reynolds numbers &s functions of the wall-=temperature
and injection-mass-flow parameters for both stagnation and zero-pressure-
gradient flows, the separate and simultaneous effects of wall temperature,
injection maess flow, and pressure gradient are studied in the present
investigation.
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The stability criteria to be used in this study are primarily the
approximate two-dimensional criteria developed by Lin and Iees (refs. 18
to 20) with modifications along the lines of Bloom (refs. 14, 21, and
especially 22). As will be seen, however, a slight extension in these
criteria 1s necessary for certaln types of cases, including the flow
over a flat plate with a normal injection mass flow at the wall. This
extension is made herein. Subsequent to the completion of most of the
calculations, a report by Dunn and Iin (ref. 23) appeared, in which a
slightly modified set of sfabllity criteria was developed. This report,
moreover, included a treatment of three-dimensional disturbances. In the
present investigatlon, consequently, slightly more than half of the cases
were recalculated sccordingly, and the results were compared with those
based on the previous criteria. The comparison indicates that, although
quantitative differences appear, the conclusions for the flows investi-
gated herein based on either set of criteria remain quite similar. It
will be seen, moreover, that for the low-speed though compressible flows
treated hereln, it is sufficient to determine the stability character-
istics for only two-dimensional disturbances, since the flows will be
more steble with respect to three-dimensional disturbances.

The present report is divided into three sections. 1In the first
sectlon the stabillty criteris to be used in this investlgatlion are dis-
cussed explicitly. The mean-flow boundary-layer solutions investigated
herein and the applicetlion of the stabllity criteria to them are then
discussed in detail In the second sectlion. Finally, the third section
presents the results of the stabllity celculations and the conclusions
drawn from them.

This research was carried out at the Polytechnic Institute of
Brooklyn Aeronautlicel Leboratories under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronsutics.
The authors hereby express thelr thanks to Professor M. Bloom for his
helpful dlscussions.

SYMBOLS
c dimensionless complex phase velocity of disturbance,
cp + lcy(ep, and cy real); for a neutral disturbance,
c = cy ) '
Cq value of c¢ &t minimum critical Reynolds number
o specific heat at constant pressure

f function of 17 related to velocity profiles by equation (Bl)
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fr value of f at wall, proportional to normal mass flow at
wall (negative for injection) (ef. egs. (29) to (32))

G(z,A) function in stability analysis, defined by equation (7)

Gmin(K) minimum value of G(z,A) wlth respect to 2z for a fixed
value of A )

J(e) function in stability anslysis, given by equation (5)

J(z,\) = 1/6(z,\)

Ipin(e) = 1/Gpn(A)  (with A as a function of ¢ 1in accordance with
eas. (8) or (10))

K factor in expression for momentum thickness (eq. (35))

k coefficient of heat conductivity

L boundary-layer length (such as momentum thickness) used in
stabllity calculations

[ characteristic main-stream length (such as chord)

M Mach number

M) = My (a/)

m exponent in equstion (25)

Pr Prandtl number

R critical Reynolds number, uyL/v;; that is, values of wylL/vy
along neutral stability curve

Ry = R{a/o )

Ry Reynolds number based on conditions at reference point out-
side of boundary layer, ubl/vb

Rs4 Reynolds number based on momentum thickness, u,8y/vq

T absolute temperature |

Ty coolant temperature

5 time

u velocity in x-direction
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Vir normal velocity component at wall

W o= ufuy

X,y coordinates parallel and normel to surfece, respectively

Z coordinate perpendiculer to x and ¥

z varieble used in stability a.na.lysié (see egs. (%) and (11))

Zo velue of z corresponding to minimum value of G(z,\) for
a fixed value of A

o dimensionliese wave number of two-dimensional disturbance
(eq. (1))

a = or,e + Bz

g proportional to dimensionless wave number in three-dimensional
disturbance (eq. (22))

YTy angles defined in figure 6

54 momentum thickness of boundary layer

€ : . eéxponent in hest-conductivity-—temperature reletion, k « Te

) verisble defined by equation (26)

9 temperature~difference ratio, (‘1‘ - Tw)[(Tl - TW)

o, = (as/an),

K exponent 1n specific-heat—temperature relation, Cp = o

A stebllity profile parsmeter (see egs. (8) and (10))

i coefflcient of viscosity

v kinematic viscosity, u/p

3 dimensionless distance slong wall, x/1

p mess density
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Qr(z),¢i(z) real and imaginary parts, respectively, of function
related to Tietjens function

o(t) injection mass-flow parameter, (pwvw /pbub) V‘H—b

P " average value of @(¢) over length 1

w exponent in viscosity-temperature relation, M « P

Subscripts:

1 values gt local outer edge of boundary layer

b values at reference point outside boundery layer, namely,
at x =1

c values at ufu; =c

Co values at u/ul = Co

min - minimum critical value, for example, Ryip

W values at wall

A prime in the main text denotes differentiation with respect to
y/L (except for 6w'); in eppendix A, a prime denotes differentistion
with respect to y; in appendix B, it denotes differentlation with respect
to 1.

A bar denotes values based on equations (10} to (12) for modified
two-dimensional stability criteria (except for §).

STABILITY CRITERIA

To aid in the physical interpretation of the results to be obtained
herein, the stability criterie upon which these results are based will
first be briefly reviewed and discussed. BSuch a brief review appears
particularly worthwhile in view of the recent literature on this subject.

Curve of Neutral Disturbances

The stabllity criteria to be epplied in the present investigation
are based primarily on those developed in references 19 and 20; these
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stability criterla are obtained by an extension to compressible flow of
the two~dimensional theory developed in reference 18 for incompressible
flow. The stability criferia are based on the amplification or decay
with time of smell disturbances superimposed on the steady-state boundary
layer, which is assumed to be known. The disturbances @ considered are
of the form ’

a(x,y,t) = F(y)el (@L) (x-curt) (1)

(The length L and the velocity u; are introduced in eq. (1) so that

a and c¢ as defined there are nondimensional.} The wave number « is
real and posltive and 1ls lnversely proportional to the wavelength of the
disturbance. The disturbance velocity ¢ may be complex. Thus,

c =cu + icy, where cpu)  is the phase veloeity of the disturbance,

vhile ¢4 determines the time rate of amplification (c1_> 0) or decay
(c4 < 0) of the disturbances. The case ci = O defines a neutral dis-
turbaence and determines the bounds between stable and unstable flows.

By epplying the Navier-Stokes equations, in conjunction with approxi-
metions pertelning to boundary-layer flows, it is found that the stability
of & particular boundary layer at any given polnt x along the flow
depends only on the local properties (such as the velocity and temperature
profiled) of the boundary layer at this point and not, for example, on the
previous history of the flow. This hes been found to be true, as a first
gpproximation, even when axiasl gradients of the disturbances and the nor-
mal velocity component of the steady-state flow are taken into account in

the disturbance equations {refs. 24 to 26).1 Thus a set of linear homo-
geneous partial differentisl equations in the disturbances is obtained,
with solutions in the form of equation (1). When equation (1) is inserted
into the partial differential equations, a set of linear homogeneous
ordinary dilfferentiel equations, with y as the independent varilable, is
obtalned. The condition for the existence of a nontrivial solution, under
appropriate homogeneous boundery conditions, then yields a relastion
between o and the elgenvalues ¢, with the Reynolds number R as &
parameter. This relation can be written as two equations of the form

Cyp (“,R)

Cr

(2)

Cq ci(a,R)

1re maey be noted in this connection, however, that according to
reference 26 the normel-velocity terms in the basic differential equa-
tions are of a larger order of magnitude then the axial-gradient terms.
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By setting cy = O, which is the condition of neutral stability, a rela-

tion between o and R, of which a typical form is shown in figure 1,
is obtained. For a supersonic main stream (M3 > 1) at the edge of the
boundsry layer it is assumed that the disturbances must be subsonic,
which requlres, iIn such cases, that

' cp > 1 - (1M1) (3)

The lower branch of the neutral curve of o versus R is asymptotic
to the R-axis, that is, R »» as o —» 0. The asymptotic behavior of
the upper branch depends in genersl on the vanishing or nonvenishing of
the quantity (3/dy)(p du/dy) in the local boundary layer. Thus, the
upper branch also approaches the R-axis a8 R — « provided that
(3/3y)(p du/dy) # O 1in the boundary layer; otherwise, if

(3/dy)(p du/fdy) = 0 at ufu) = cg say, then the upper branch has a

positive asymptote, namely o — ag, where ag corresponds to c = Cg

in the characteristic equation for an infinite value of R. The portion
of the curve inside the two branches has been shown to correspond to
pairs of values of o and R for which the boundary layer will be
unstable, while for the pairs of values of o and R outside the loop,
the flow will be steble.

Minimum Critical Reynolds Number

Of particular interest in the present investigation is the minimum
value of R, called the minimum critical Reynolds number and denoted as
Rmin, on the neutral curve. From figure 1 it can be seen that Ry, is
the Reynolds number below which a1l (small and subsonic) disturbances,
regardless of wavelength, will be demped ocut. Thus, & necessary condi-
tion for unstable boundary-layer flow, at least with respect to small
two-dimensional disturbances of certaln wavelengths, is that the actual
Reynolds number at some station exceed Ryi, at that station. If the
free-stream turbulence 1ls sufficiently low, then this appears to be a
necessary condition for eventual transition from a laminar to a turbulent
boundary layer. Actual transition, however, occurs downstream of the
point where the minimum critical Reynolds number is first exceeded and
depends on additional factors such as the actual size of the disturbances
and hence on their rates of emplificatlion as well as on nonlinesr effects.
Even in this respect, however, the value of Ry;, may have. special sig-
nificance, for it is stated in references 9 and 20 that the maximum rate
of amplificatlion of the selfexcited boundary-lasyer disturbances varies

roughly as %/' Rﬁi)min' Thus, the magnitude of the minimum critical

Reynolds number can serve at least as a qualitative measure of the degree
of stability, and hence of the tendency for transition, of a given boundary-
layer flow. Since the present analysis is concerned primarily with the
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effect of various parameters, such as the wall temperature and normsal
injection mass flow, on the stability of the leminar boundary layer, a
convenlent and suitable quentitative means of carrying out such an ansl-
ysls is to calculate and compare the minimum critical Reynolds numbers
for the various cases. '

Two~-Dimensional Stability Criteria and Celculation
of Neutral Curve

According to the development in references 19 and 20, the neutral
curve a = a(R) involves the varieble 2z defined as

- (M)l“ /1), (t)
vc/v:L

where the subscript ¢ denotes values at the polnt where u[ul = c,

called the inner criticel layer. The prime here denotes differentiation
with respect to y/L. The actual location of the critical layer depends
largely on the function (using the notation of ref. 22)

7(e) = - (u/ul)w'C(Tc/Tl)2 [?_(u_)]c'

q 3 PL\UL
[(u/ul) ]c (T3e/T1)
L /)y (e /M) [m/ul)" _ (/) ] (5)
[y ] mapmy L/ G ],
observing that p/p; = T1/T). Along the neutral curve,
/P _
I(c) = J(z,N) (6)

where J(z,\) is a certain function of 2z and a boundary-lsyer profile
parsmeter A defined below by equation (8) (functions J(z,N) and J(c)
correspond, respectively, to vi(z,c) and v,(c) 1in ref. 23). The func-
tion J(z,A) can be expressed &s (cf. refs. 2> ana 23)

1

m =G(z,\) = Qi-

2, 5.2
11-(2¢r-1)7\+(—¢1<‘-11——i—§—)7\2 (1)
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where Qr(z) and ¢i(z) ere the real and imaginary parts of a function

related to the Tiletjens function and can be found tabulated or plotted in
references 18, 19, 20, or 23. The parameter A is given by

Ne = e (y) o ®)

Substituting for (y/L)c according to equation (8) into equation (L4) and
solving for aR ylelds

, .
W - z° (vo/v1) [(u/ul)w'l (9)
(u/ul)c'c5(l + A)

An accurste determination of the wave number o according, for example,
to reference 20 (eq. (27) and appendix) involves the calculation of inte-
grals with certain types of singularities (cf. also ref. 25, where this
procedure is somewhat simplified).

For any given boundary-layer flow, equations (6) and (9) end an equa-
tion for o determine points on the neutral curve in the oR plane. ’
Thus, for a chosen value of e, J(c¢) and A{c) £follow from equetions (5)
and (8), respectively, while dJ(z) £ollows from equation (7). Values of
z satisfying equation (6) are then determined. If there are no values
of 2z satisfylng equetion (6), then no neutral disturbance with the par-
ticular chosen (dimensionless) phase velocity c¢ will exist for the glven
flow. If values of z sstisfying equation (6) for a glven value of ¢
do exist, then i1t will be found in general that two such values occur.

This is due primarily to the nature of the G(z,A) curves (cf. fig. 2).
For each of these values of z, oR can be calculated from equation (9),
while o can be determined from an additional eguation. This ylelds a
pair of values of « and R.

In a recent Investigation, including three-dimensional dlsturbances,
Dunn and Lin (ref. 23) have, for greater accuracy, slightly modified the
above two-dimensional stebility criteris. The parameter A (to be denoted
here by = bar) is now expressed as

- u/u Vv, /v 1/2 ( c = (u/u
Ae) = %( / l)WCB(/Z/ 1) fo y/L)CJ ____v;vi 1) d(%) -1 (10)

Moreover, from & modified definition of 2z, R (also denoted by a bar)
is now given by
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-2
— (/L)e e = (v/u)
= 2|2
oaR = z -§U/; ——-;731——— d(%) (11)

With the use of equation (10), equation (11) can also be written as

~ 2(% /1) [(u/ul)wj ¢

oR = , (12)
3 + A7

Although equations (10) and (12) mey in certain cases yleld substantially
different quantitative results from those obtained by equations (8) and
(9), the new equations are on the whole essentially similar to eque~
tions (8) and ?9), and in cases of very moderate tempersture changes in
the boundery layer the two sets of stablility criteria will even yileld
similar quantitetive results. A more detailed comparison of these two
sets of criterias 1is given in subsequent sections.

The calculation of the neutral curve as described herein can be
lengthy and tedigus. If, however, 1t ls deslred only to calculate the
minimum critical Reynolds number, corresponding therefore to only one
point on the neutral curve (cf. fig. 1), then, with certein approxims-
tions, the calculations can be considerebly simplified. Such approxima-
tions are particularly useful if, as iIn the present investigation, it is
desired to determine the effect of various parameters, since the consigt-
ent use of an approximste set of stebility criteria should suffice to
give a quentitative as well as a qualitative indicetion of these effects.

The minimum critical Reynolds number may be assumed to correspond
to thet value of the wave velocity c for which there will be a single,
and only a single, value of 2z satisfying equation (6) (refs. 22 and 23).
This is equivalent to assuming thet R,y,, corresponds to that value of =z

for which G{z,\) will be a minimm for a fixed value of A (cf. fig. 2).
This assumption appears reasonsble since i1t has been seen (cf. fig. 2) that
the minimum point on a G(z,A\) curve marks the boundary below which neu-
tral disbturbances cannot exist. It may also be noted that the value of ¢
corresponding to a minimum value of G will ususlly be found to be the
meximum value of c for which equation (6) can be satisfied. This appears
to be due primerily to the fact that J(c) (= 1/G(c)), et least in the
vicinity of its intersection with the Gpiple) or Jpax(e) curve,
incremses monotonically with c¢. These arguments are based on neglectling
the varistion of A(c) with c. This, however, appears to be justified,
since, at least in the vicinity of the critical layer, it has been found
thet A(e) varles relatively very slowly with c.
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In cases in which |A[ << 1, it follows from equation (7) that
G(z,\) will be a minimm for a given value of c¢ (or A) at approxi-
mately the value of 2, namely z = 3.22, et which 0;(z) 1is & maximum.

Since at  z = 3.22, @; = 0.580 and &, = 1.50, it follows from equa~-
tion (7) that for small values of |A]

Gmin(x) = é,%'- 37\' (13)
Equation (6) then becomes |
(1 - 22)d(e) = 0.580 : (1)

Equation (14) is the familiar approximate equation which has been devel-
oped and used in references 18 and 20 and has been applied in most approxi-
mate stability calculetions.

In certain of the cases studied in the present investigation, namely,
the flow over a flat plate with spprecisble normal fluld injection at the
wall, large negative values of A (of the order of magnitude of -0.7T)
are obtained, and equation (13) (and, hence, also eq. (14)) is then no
longer strictly valid. In place of equation (13), minimm values of
G(z,\) wlth respect to =z for variocus fixed values of A can be calcu-
lated straightforwardly by means of equation (7). This has already been
carried out by Bloom (ref. 22) for large positiveZ values of A. For
negative values of A, G(z,%) is shown plotted in figure 3 as a function
of z for various fixed velues of A when A > -1. From figure 3, for
each fixed value of A, the values of z (to be dencted as zg) and of
G (denoted as Gpip) &t which G is a minimum are determined. The values

of 2z, and Gpj, as functions of A are given in figures 4 and 5,
respectively. It may be noted from figure % that 3z, varies fairly
slowly (from zg = 3.10 at A =0.1 to 3z, =3.7% at A = -0.8) with

A in the range shown; Gmin(%), on the other hand, varies rapidly st
appreciable negative values of A and becomes infinitely large as A — -1

(fig. 5). For very low values of |A|, 1t is seen from figure 5 that
Guin(A) is given approximstely by equation (13).

21n carrying out calculations for flow over an Iimpermeable flat plate
at high Mach numbers and large rate of cooling on the basis of equation (8),
very large positive values of A were obtained by Bloom. Uslng equa-
tion (lO), however, Dunn and Lin (ref. 23) subsequently obtasined small
(positive) values of A for all such cases of flow over an impermesble
flat plate. :
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Physical or Geometric Significance of A

It may be of interest to note that the stabllity parameter A hes
a fairly simple physical or geametric significance. First, however, it
should be observed that equation (lO), which 1s the more accurate equa-
tion for A, is, at least for cases of moderate temperature changes within
the boundary layer, qualitatively quite simllar to equation (8). It can,
in fact, be shown (appendix A) that if v 1s assumed constant, then an
expansion of the velocity profiles about the criticel leyer u/ui =c

indicates that to a first approximation both A and A will be propor-
tlonel to the second derivatives of the velocity profiles and will have
the same order of magnitude. It will subsequently be seen that_for all
of the (low-speed) cases treated herein the values of A and A are
essentially similar. (For cases of high Mach number and very large tem-
perature changes within the boundary layer, however, eq. (10) may yield
significently different results from eq. (8) because of the presence of
the kinemstic viscosity v terms in eq. (10)).

It is seen from the expansion about the critical layer (appendix A)
that A (or R) depends on the curvature of the velocity profiles. The
geometric significance of A can be seen particularly clearly from the
approximate equation (8). From figure 6, in fact, 1t can be readily
seen that, according to equation (8), 1f the velocity profile is plotted
(in the customary manner) with y a8 ordinate and u as abscissa, then
at any polnt on the profile

= tan .
R _ (35)

~where tan 7, 1is the slope of the velocity profile (dy/du) = 1/(du/ay)

at the wall, while <+tan 7y 1is the slope of the secant from the origin to
the glven point on the velocity profile. Thus, [A[ will be small if the
velocity profile is almost linear near the wall; however, A will, for
example, have a large negative value 1f 7y 1s appreclably smaller than
7, and hence if the velocity profile has an appreclable convex curvature
(ef. fig. 6). The velocity profiles for flow over & flat plate with
fluid injection at the wall are found to be of the latter type. On the
other hand, it will be seen that the veloclty profiles for stagnation
flows with or without fluld injection ell have only slight curvature near
the wall and hence are assoclated with small values of [Al.

Calculation of cq

The minimum critical Reynolds number depends strongly on the loca-
tion of the inner critical layer, as given by the value of c¢. In order
to determine ¢y, the value of c corresponding to the minimum eritical
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Reynolds number, J(c) and A(c) are first calculated as functions of
e (or equivalently of (y/L)s) in accordance with equations (5) and (8)

or (10), respectively. For each value of c¢ with the corresponding
values of A, Gmin(c) is obtained from figure 5. The value of cq is

the value of c¢ for which

= 1

Equation (16) cen be solved by plotting J(ec) and Jpin(c) and obtaining
thelr point of intersection. Examples of such curves are given in fig-
ure 7.5 This method of determining c,, in conjunctibn wlth figure 5,

has been consistently applied in the present report for all of the cases
studied herein. (In refs. 9 to 11, where the stability of the laminar
boundary layer over a flat plate with normel filuid Injection is treated,
no mention is made of the sctusl numerical values of A obtained therein.)

Calculetion of Minimum Critical Reynolds Number
In reference 9, the following spproximstion for the wave number «

has been used for the calculstion of the minimum critical Reynolds number
of the laminar boundary layer over a sweat-cooled flat plate:

/T eo
O s SETE

This expression has evidently been obtained from equation (27) of refer-
ence 20 by neglecting all terms proportional to « (or powers of )
on the right side and replacing the quantity u - L by the constant 1.2.
The latter approximastion for u - L may be adequate at least for low
speeds (Ml = 0). The use of a simple approximate expression such as

equation (17) for « introduces a considereble simplification in the sta-
bility calculations. In cases for which the wall temperature ratio Tw/Tl
does not differ grestly from unity, equation (17) is substantially similar
to the more frequently used approximstion developed 1n reference 20,

namely,

o= (u/ul)W'COVi - Miz(l - c0)2 (28)

3In the actusl calculstions, these curves were all plotted on more
suitable individual scales. The chief purpose of figure T 1s for the
subseguent comparative discussion of the results.
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For My =0, equation (18) reduces to the spproximetion for o developed
in reference 18 for incompressible flow. '

By inserting expression (lT) for a 1into equation (9), the following
expression 1is obtained for the wminimum critical Reynolds number:

Le2z(veo ) [(2/1), ] 2/ P) (2 - 20)?

R, = (19)
min . 1/2
3 : 2 2
ey (u/ul)cO (l + 7\00)3 [l - My (l - co) ]
Similarly, equation (12) in conjunction with equation (17) yields
3 ' 2
. L.2zg” (vig/va) (TwfT1) (w/u),' (L - <)
n = (20)

cor (X + Xco)a[l - M2 - co)2]1/2

In equations (19) and (20) the subscript ¢, denotes velues at u/ul = Cqe

Equation (20) is; in general, essentially similar to egquation (19), espe-
cially in cases of small thermel changes in the boundary layer (for which
vc/vl ~ vw/vl) and of small curvature of the velocity profiles (for which

A} or |A] << 1, while (ufu) ' = (u/ul)w').l‘ Tt should be noted, how-

ever, that the velue of cg to be used in equation (20) will not neces-

sarily be exactly equal to that 1ln equatlion (19), since the former should
be based on expression (10) for X, while the latter should be bhased on
equation (8).

It may be noted that in cases of small velues of |A| and cg, with
T, /T; close to unity, equation (19) or equation (20) reduces (exceépt for

a constant factor of 1l.2 X (5.2)3 = 39.3, instead of 25) to the following
relatively familiar approximate expression developed 1in references 18
and 20:

) 25(vco/vl)(u[ul)w'
Riin . - ;
o [1-1-11 (l-co)]

YEven in cases of fairly large curvature, equatlons (19) and (20)
tend to be similar even quantitatively. For example, if A(=1A) is nega-
tive, then the additional (l + Kco) factor in the denominafor of equa~
tion (19) tends to make Rpyy, greater than ﬁmin,'but the fact that in
such a case (u/ui) t> (u/ul)w‘ tends according to equations (19)

c

(21)

1/2

and (20) to compensate (sometimes even overcompensate) for this effect.
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In the present Investigation, 211 of the calculations were first carried
out on the basis of equation (19) in conjunction with equation (8), and
subsequently, for comparison, a majority of the cases were recalculated
on the basis of equation (20) in conjunction with equation (10). In all
of these cases, the value of M; was M; = O.

Three~Dimensional Disturbances - Extension of Squire's Theorem

The stability criterias discussed in the foregoing sectlons are based
on two~dimensional disturbances, represented mathematically by equations
of the form of equation (1). Actual disturbances may, however, be three
dimensional. Such disturbances, for boundery-layer flows, can be repre-~
sented in the form

a(x,,2,t) = F(y)et [(@/D)xr(B/1)2=(a/L)uyct] (22)

where B (as well as o) is real and positive.

For incompressible.flow, it has been shown by Squire (ref. 27) that
the stability equations for three-dimensional disturbances in the boundary
layer can, by simple sultable transformations, be reduced to the equations
of two-dimensionel disturbances with wave number o4 and Reynolds num-

ber Ry defined by

02 = o + p2

(23)
Ry = Rla/a1)

Since R; < R, it is concluded thet any instabllity which may be present

for a two-dimensional disturbance will also be present for a three-
dimensional disturbance at a higher Reynolds number. Consequently, incom-
pressible flows are more stable with respect to three-dimensional disturb-
ances than with respect to two-dimensionsl disturbances, apd it is
therefore sufficlent, in practice, to analyze the stability of incompres-
slble flows with respect to only two-dimensional disturbences.

For compressible flow (at Mach numbers below the hypersonic range),
it has been recently shown (refs. 23, 28, and 29) that by transformations
esgentially analogous to those for incompressible flow, the stability
equetions for three-dimensional disturbences in the boundsry layer can,
once agein, be reduced to those for two-dimensional disturbances with wave
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number o,y and Reynolds number R} as glven by equations (23).5 Bow~
ever, the Mach number M; corresponding to these quasi-two-dimensional

disturbances will be .
. ﬁl = Ml(a./a.l) (2,'")

Because of the transformation of the local Mach number as gilven by equa-
tion (24), the quasi~two-dimensional disturbances 3o not represent proper
two-dimensional disturbances, and Squire's theorem on the greater sta-
bility of a given flow with respect to three~dimensionsl disturbances
than with respect to two-dimensiomnal dlsturbances is no longer strictly
valid (ef. ref. 23). On the other hand, for compressible flows at zero
Mach number (1.e., at low speeds), such as those to be investigated in
the present report, there is no transformation of Mach number, and

Squire's theorem remsins valid.6 Thus, for the cases studied herein,
it is sufficient to analyze the stabllity with respect to only two-
dimenslonel disturbances.

MEAN-FLOW OR STEADY~STATE SCLUTIONS

The stebility criteris described in the section entitled "Stability
Criteria" depend on the particular steady-state or mean-flow boundary-
layer solution considered. It has been seen, moreover, that the stability
criteria are falrly sensitive to first and especlally to second deriva-
tives of the velocity profiles (cf. egs. (5)). Consequently, it is neces-
sary that the mean-flow solutions considered be sufficiently accurate with
respect to these derivatives. In the present study, such solutions are
required for the case of compressible (i.e., variable density and tempera-
ture) flow with heat transfer in a preesure gradient with a small normal

5Th'e energy eguation, not considered in reference 27 for incompres=
gible flow, appeared at first (ref. 29) to yield additional terms which
do not permit a strict reduction to quasi-two~dimenslonsl-disturbance
equations. However, 1t 1is shown in reference 23 that these terms will,
at least for moderate Mach numbers, be as small as other terms whilch have
been neglected. .

6This cen be further verified from the condition (9.12) of refer-
ence 23 under which compressible three-~dimensional disturbances have
a minimum critical Reynolds number higher than that of two-dimensional
ones. If Mj = 0, then this condition will be seen to be identically
gatligfied. Moreover, at nonzero but subsonlc free-stream Mach numbers,
three-dimensional disturbances, according to reference 23, will usually
haeve & minimm critical Reynolds number higher than that of two-
dimensional ones, except possibly under conditions of extreme surface
cooling. : L :
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injection veloclty at the wall. Only a limited number of sufficiently
accurate solutions for such feirly general cases appear to have been
obtained thus far. A class of boundary-layer solutions of particular
interest is that for flow over a transpiration-cooled wall with a uniform
coolant, as well as a uniform wall, temperature. Approximate solutions
for such flows, with arbitrarily prescribed pressure gradients and Mach
numbers (below the hypersonic range), have been developed in reference 30.
These, however, are based on the assumption of fourth-degree profiles and
may therefore not be sufficiently accurate for stablility calculations

(ef. ref. 12), except, perhaps, for the stagnation flows explicitly cal-
culated therein (cf. ref. 31). Solutions of greater accuracy for an
arbitrarily prescribed pressure gradient can be developed without 4if-
ficulty from the anslysis in reference 1. It would merely be necessary,
for this purpose, to apply sixth-degree velocity profiles (cmltting the
boundary condition (17d) in ref. 1) instead of the seventh-degree velocity
proflles used therein. Another set of solutlons for flow over a sweab-
cooled wall which have been developed is that based on low-speed, but
compressible, flow with the local velocity outside the boundary layer
proportional to a power of the downstream distance along the wall (refs. 16,
17, and 32). Since, as will be seen, these solutions are particularly
sultable for the purposes of the present investigation, these sre the
solutions the stability of which will be analyzed here.

Boundary-layer Solutions for "Wedge Flows"

Flows for which the local velocity at the outer edge of the boundary
layer 1s proportional to. s power of the downstream distance along the wall
have been called wedge flows since, in Iincompressible fiow, they can repre-
sent the potential flow over wedges of varlous angles (see, e.8., ref. 33).
Such flows can be characterized by the following nondimensional equation
for the wvelocity distribution outside the boundary layer:

u fu, = €0 (25)

where m 1s a given constant, and the subscript b denotes (reference)
conditions at &€ =1 or x =1 outside the boundary layer. The pres-
sure gradient in such a flow will be positive (adverse) or negative
(favorable) according to whether m< 0 or m> O. Such flows were
originally lnvestigated for incompressible flow over an impermesble wall
in reference 34t. The case m = Q0 represents the flow over a flat plate
(zerc pressure gradient), while the case m = 1 represents the subsonic
flow in the immediate vicinity of a two-dimensional forward stagnation
point. These cases, therefore, have particular physical significance.
For zero Mach mumber, as will be assumed here,

T /Tp = p1/ep =1
along the entire flow.
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In reference 32, boundary-layer solutions for flows characterized
by equation (25) (especially with m = 1) over a sweat-cooled wall were
developed for incoampressible flow with constant fluid properties. Such
solutlions were subsequently extended in references 35, 16, and 17 to low-
speed compressible flows wilth veriable fiuld propertles. The wall tem-
perature in all of these flows is assumed to be uniform. The mathematical
advantage of treating such flows is that, by a fairly simple transforms-
tlon, the partial differential equations of the boundery layer can be con-
verted exactly into ordinary differentisl equations. Thus, a class of
similar solutions is obtained, with the velocity u/ul and tempere-

ture T/Tl profiles as functions of a single varisble n defined by

Pyt
= —_— (26
" =Y )

In references 16 and 17, the boundary-leyer solutions for various
velues of m (from m = -0.09 to m = 1) have been tebulated in detail.
It has been assumed in these solutions thet the viscosity, heat conduc-
tivity, and specific~heat coefficlents are proportional to certain powers
of the absolute temperature. Thus, it 1s assumed that

kjk, = (T/T )¢ ¢ (27a)
°p/°p, = (2/Tw)
The numerical values of w, €, and k have been taken to be
w=0.T
€ = 0.85 (27o)
k = 0.19

According to equations (27a) and (27b), the Prandtl number Pr(s pgp/k)
will vary very slightly according to the relation

)O'OF (27c)

Pr(Pry = (T/Ty)" " = (T/2y

It has been assumed in references 16 and 17 that
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Pr_ = 0.7 (274)

Since the pressure is assumed to be constant across the boundary-lasyer
thickness, the ideal gass law implies

P[Py = T[T (28)

Distribution of Normael Injection Velocity

In order to obtaln similsr solutions of the boundary-layer partial
differential equations for the cases represented by equation (25), a
particular type of distribution of the normal injectlion mass flow along
the wall must be assumed. In particular, it is essumed that £y 1s con-

stant, vhere Iy, which is dimensionless, is defined by

_ 2 fpwx
o e ey (29)

From equation (29), in conjunction with equations (25), (27a), and (28),
it follows that the distribution of normal injection mass flow along the
wall will be

PV T ';’er' ~1-m
ofs) = o B - g (me D0e) B TE (50)

(fw is negative for injectlon and positive for suction; 1 1s a charac-
teristic length in the direction of flow, not related to the boundary-

layer length I. 1n the stebility equations). Thus the dimensionless
injection mass-flow parameter ¢ wlll be proportional to the constant -fy;
and will vary inversely as the (1 - m)/2 power of the distance along the
wall.

For stagnation flows (m = 1), equation (30) shows that the normal
injection mass flow &t the wall Implicit in the similer solutions treated
here will be uniform. In that case, in fact,

1=
2

Pz = ~Fur (1) (512)

For flow over a flat plate (m = 0), on the other hand, @ will diminish
along the wall from an infinitely large velue at the leading edge as shown

by
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/2

1w -1
Pu=0 = 'wa/2)<T1jﬂko—E_ 13 (31v)

m
Typical distributions of @(¢) are shown in figure 8.

It mey be noted that for a given (megative) value of f, and a
glven wall temperature ratio TWJT1(§ 1), the average value of @ over

the length 1 will be the same for_all values of m. This follows from
equation (30), according to which & will be independent of m (for
n> -1). In particular, for m> -1,

L~

L 2
- I1
= = -f —
5 L o(E) at )

T, (32)

Equation (32) indicates the physical significance of the constant fre

Thus, ~f,; is approximately equal to the average value along the wall
of the injection mass-flow parameter ¢.

Equation (30), with f, constant, for the distribution of the nor-

me] mass-flow parsmeter ¢ has been obtained wlthout consideration of
any heat-balance equation between the fluid flowing over the wall and
the cooling fluld injected through the porous wail. It can be shown,
however, (cf. the section immediately following) that if such a heat
balance is teken into account then the condition that the coolant tem-
perature as well as the wall temperature be unliform yields the same type
of distribution for () as does equation (30).

Coolant Temperature

In references 16 and 17, a heat-balence equation at the transpiration-
cooled wall was not considered. Consequently, no relation 1s given there
between the meintained uniform wall temperature and the mass-flow con-
stant £y on the one hand and the coolant temperature on the other hand.
Such & relstion, however, can be obtained wilthout difficulty by first
expressing the condition that the heat transferred by the hot gas to the
wall 1s absorbed by the coolant. Thus, i1f air is the coolant, then

(e 3/3y)y = oy (T - T1) (33)

where T; 1s the coolant temperature, which is assumed to be uniform along
the wall. Solving equation (33) for T; and meking use of equations (26)
and (29) give the following expression for:the coolant temperature ratio:
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I I 5) 3
T Tp (m J)Prw -fw)< T (34)

where 9 ' = (ad3/dy), and 9= (T - TW)/(Tl - Ty)e

From equation (34), the (implicit) value of T;/T; corresponding
to a palr of values of TW/P1(< 1) and fw(< 0) can be determined for
any case. [ Corresponding velues of the coolant temperature ratio are
included in figure 8.

Application of Tebulated Solutlions to Stability Calculations

In references 16 and 17, for a given value of m, the solutiones of
the ordinary differential equations for the velocity and temperature pro-
files are tabulated explicitly for values of 1 throughout the boundary-
lsyer thickness. Moreover, first, second, and third derivatives of these
solutions are also tabulated, and from them the derivatives of the veloc-
ity and tempersture profiles required 1n the stability calculations can
be easily obtained. For this reason the solutions tebulaeted in refer-
ences 16 and 17 are especially well suited for the stability calculations
to be performed in the present investigation.

In applying equations (19) and (20) to the boundary-lsyer profiles
tabulated in references 16 and 17, the boundary-lsyer length L has been
taken to be the momentum thickness ©&j. Application of equations (19)
or (20) then yields directly the minimum critical Reynolds numbers based
on the momentum thickness and the locel velocity wu;. Observing that,
for the boundary layers analyzed here, the momentum thickness can be
expressed in the form

. - Kx(—%j-{-)-l/z (35)

where K is independent of x (but depends on m, TW/Tl, and fy),

the minimum critical Reynolds numbers based on the free-stream length 1
and the reference conditions (i.e., et point b) can be obtained. Details
of the explicit equations used in the calculatlons are given in appendix B.

o}

TPor several of the cases treated in references 16 and 17, negative
values of Ti/Tl are obtalned. This simply indicates that in order to
maintain the given wall temperature ratio T,/T;, a higher rate of mass-
flow injection (i.e., & higher value of -fy) would have to be used in
actual practice.
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STABILITY OF STAGNATION FLOWS AND FIOW

OVER F1AT PIATE

In order to investigate the stability of boundary-layer flows with
normel fluid injection in & pressure gradient, the minimum critical
Reynolds numbers have been calculated for two-dimensional flowse in the
immediate vicinity of a stagnation point (eq. (25) with m = 1). This
is & relatively simple physicelly significant flow with a favorable
(negative) pressure gradient. In order to determine the effect of the
pressure gradient, the minimum eritical Reynolds numbers have also been
calculated for flow ln a zero presgsure gradient or for flow over a flat
plete (eq. (25) with m = 0). For both cases, the tabulated solutions
in references 16 and 17, as described in the section entitled "Mean-Flow
or Steady-State Solutions," have been used. For each value of m, nine
different flows have been tabulated in references 16 and 17, corresponding
to three different wall temperature ratios (Ty/T1 = 1, 1/2, and 1/4) and

three different values of the mass-flow injection parameter I,

(£4 =0, -1/2, and -1). The main results of the stability calculations
are given in tables I and ITI and in figures 7 and 9 to 13. :

Effect of Cooling of Wall and of Normal Mass-Flow Injection

In figure 9, the minlmm critical Reynolds numbers (Rsi)mi based
n

on the momentum thickness are shown as functions of the wall temperature
ratio Tw/Tl for various fixed values of the normal injection mass-flow

parameter fw.a The results for both stegnation flows and flow over a
flat plate are shown in this figure. For a given value of -f, 1t is
seen that, as might be enticipated, the minimm crltical Reynolds number

increases, that is, the flow becomes more stable as the wall is cooled
or as Tw/Tl diminishes. This stabillzing effect of coollng of the wall

(for a fixed value of -fw) is seen here t¢ be particulerly pronounced
for the flow over & flat plate at zero or moderste (fy = -1/2) rates of
normsl mass flow. It may also be observed from the nsture of the curves

in figure 9 that the stabilizing effect of cooling of the wall with a
given value of £, 1s enhanced at the lower wall temperatures.

8The square root of the minimum critical Reynolds number J(Rai)mi
n

is plotted here on semilogarithmic peper merely for convenience in showing
all of the results on one scale. Each curve for a fixed value of £, is
based on only three calculated points. A smooth curve through these pointe
has nevertheless been drewn in order to show clearly the trends. See

also table T, ' . : - .
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In figure 10, the minimum critical Reynolds number for both stag-
nation and flat-plate flows is shown as & functlon of the normal mass-
flow parameter (cf. eq. (30))

[2/(m + 1)) 0t (1-m)/2 _ _fw(Tw/Tl)-(l-m)/a

for various fixed values of the wall temperature ratio TW/Tl} Here the
separate destabilizing effect of the normsl mass flow can be clearly

seen. This effect is seen to be especially pronounced for flow over a
flat plate with & cooled wall (T[T; = 1/2 and 1/4).

The net effect of glmultaneous cooling of the wall and normal fluld
injection can be clearly seen from figures 9 and 10 by comparing the
results with those for the case of an impermeable uncooled wall
(fw =0, Tw/Tl = l). The latter case, for the stagnation and flat-plate

flows, 1s shown by the corresponding horizontel lines in figures 9 and 10.
For each type of flow (i.e., stagnation or flat-plate flow) a net sta-
bilizing effect of transpiration cooling is indicated by those pairs of
values of £, &and TW/Tl or @ and Tw/Tl on the curves in figures 9
or 10 which lie sbove the horilzontal line corresponding to f,; =0 and
Tw/T1 = 1. Thus, particularly from figure 10, it is seen that for the
stagﬁation flows the net effect of transpiration cooling (with Tw/Tl < l)
ls stabilizing in all of the cases calculated herein, except for the case
Ly = =1 and Tw/Tl = 1/2, where the net effect 1s slightly destaebilizing.
Such 1s also the case for the flow over a flat plate (cf. fig. 10), except
that, at the low tempersture ratio Tw/Tl = 1/4, the high mass-flow injec-
tlon rate (fw = -l) practically cancels, or more than cancels, the sepa-
rete stebllizing effect of the cooling of the wall. Flows over a highly
cooled wall (e.g., T,/T; = 1/k) with low rates of normal mass flow (e.g.,
-f,; S 1/2) will, of course, be particularly stable and will have relatively

high minimm eritical Reynolds numbers.

From figure 11 it is seen that the resulis for the minimum critical
Reynolds numbers based on free-stream or reference conditions are essen-
tially similar to the above results (cf. fig. 9) based on the momentum
thickness and locel conditions, provided that the free-stream Reynolds

numbers sre plotted in the form (Rb)min§m+l (see also eq. (Bll)).

Effect of Pressure Gradient

The effect of the favorable pressure gradient inherent in the stag-
netion flows studied herein can be determined by comparing the minimum
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critical Reynolds numbers for the stagnation flows wilth the corresponding
minimum critical Reynolds numbers for flow over & flat plate. From flg-
ure 9 or figure 10 it is thus seen that in most of the cases calculated
herein the stagnation flow, for the ssme pair of values of f£; and Ty /Ty,
is more stable than the flow over a flat plate. The stabilizing effect of
the favorable pressure gradient here 1s particularly great at the high
injection rates (:E‘w = -1) regardless of the wall temperature ratio TW/Tl,
or over a relatively uncoocled wall (Tw/Tl ~ 1) regardless of the injection

rate, for the range considered herein. -

Most of the overall results thus far discussed might have been pre-
dicted qualitatively on physlcal grounds. Thus, the separate stabilizing
effect of cooling of the wall, the separate destebllizing effect of normal
mass-floWw injection, and the stebilizing effect, in most of the cases, of
the favorable pressure gradient sppear in accord with physical expecta~
tions. A more detalled study of the results in table I and figures 9
and 10, however, reveals several interesting features which might, per-
haps, have been rather difficult to anticipate intuitively.

Prom figure 9, it is seen that except for the case of large rates of
mess-flow injection (fy = -1) cooling of the wall with a fixed mass-flow
paremeter fy has a consldersbly greater stabillzing effect on the flow
over a flat plate than on stagnation flows. In fact, figure 9 indicates
that, at low wall temperature ratios (T /Ty = 1/k), (Rai)mi for stag-

n

netion flows will, as a result, not be hligher than that for the corre-
sponding flow over a flat plate. Thus, the stebllizing effect of the
favorable pressure gradient here is greatly diminished and even elimi-
nated at low wall temperature ratios and simultaneous zero or low

(-fw.é 1/2) rates of normal mass flow. These results may, to some extent,

be explained by a comparison of the velocity profiles for the various
ceses. Velocity profiles are shown in Pigures 12(a) and 12(b), together
with the corresponding velues of c, (cf. also tables II(e) and II(b))
on which the minimum critical Reynolds numbers strongly depend. Fig-
ures 12(a) end 12(b) indicate that the velocity profiles for the stagna-
tion flows are ell fairly similar near the origin (and elsewhere) and
that all have concave curvature, that is, negative values of Jd2u/dy2.
Consequently, it may be expected that the minimum critical Reynolds num-
bers will all be of the same order of magnltude and will vary relastively
slowly with wall temperature and normel mass flow. For flow over a flat
plate, on the other hand, figures 12(a) and 12(b) reveal that the shape
of the velocity profiles changes appreciably as the wall is cooled from
Ty/T1 =1 to Ty/Tq = 1/% with a fixed value of fy. This can be seen

especially clearly for the case of £y -1/2. In this case, figure 12(a)
shows that for an uncooled wall (T /T, = 1) the velocity profile neer the

origlin has an appreciable convex curvature, that is, positive values of
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32u/dy®. The latter type of curvature tends to meke values of J(e)
algebraically small near the origin (cf. eq. (5)) and hence tends to

make values of co large. For fy = -1/2 with a highly cooled wall
(Ty/T1 = 1/4), however, it is seen from figure 12(b) that the velocity
profile now has a concave curvature, that 1s, negative values of Beu/dy2
with consequently algebraically higher values of J(c) near the origin
and & lower value of cg. The relatively large effect of lowered wall
temperature on the stability of the flat-plate flows st low rates of nor-
mal fluid injection can be further seen from figure 7. Here, for the
case of zero normsl mass flow, the curves J(c) and Jmin(c) and their
intersection (determining Me, @nd hence co) are shown for flat-plate

and stagnation flows over an uncooled wall (T, /Ty = 1) and over a highly

cooled wall (T/T1 = 1/4). For the flat-plate flow, the comsiderable

difference in the J(c) curves is seen to account for the much higher

value of c, (and, hence, for the much lower value of (Rsi) ) in the
min

case Ty /Ty = 1 then in the case T_/Ty = 1/k. For the stagnation flow,
on the other hand, the J(c¢) curves for T /T; =1 and T,/T; =1/k
are seen to remaln similar.

It has already been pointed out that at zero or low rates of mass-
flow injection, the stagnation flows, despite their favorable pressure
gradlent, will not be more stable and masy even he less stable than flow
over a flat plate when the ratio of wall to free-stream static temperature
is very low. This perhaps unexpected result is contrary to the trend pre-
dicted by the results of all previous stability calculations involving
a pressure gradlent which have invarisbly indicated in one manner or
ancther the stabilizing effect of a favorable pressure gredient and the
destabilizing effect of an adverse pressure gradlent. The present result,
however, does not contradlct any of these previous results since 1t desls
with a particular flow not included in the previous results. Thus,
(assuming the correctness of the tabulated solutions in refs. 16 and 17
and of the stebility criteria used herein) the present result simply
shows that there exists at least one type of flow with a favorable pres-
sure gradlent, namely & two-dimensional low-speed (Ml = 0) stagnation
flow over & highly cooled impermeable or only slightly porous wall, which
has a lower minimum criticel Reynolds number based on momentum thickness
than the corresponding flow without a pressure gradient. A partial expla-
nation of this result can be glven by comparing velocity profiles and
noting from figure 12(b), for the case of T,/T; = 1/4k, that near the

origin the veloclity profiles for the flat-plate flow behave similarly to
those for the stagnation flow when £, =0 or -1/2 (in contrast, e.g.,

with the considersble chenge of the flat-plate profile when £, = -1,

or with the different appearance of the flat-plate velocity profiles from
that of the stagnation profiles when the wall is uncooled (cf. figs. 12(a)
and T).
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From a practical viewpoint, the fact that the stability limit of the
stagnatlion flow is spparently lower than that of the flat-plate flow at
low or zero rates of injectlon over a highly cooled well does not appear

very serious. First of all, the difference in the values of (Rai)min

1s not very great.9 Moreover, the minimum critical Reynolde numbers in
both cases are so high that both types of flow may, for practical purposes,
be regarded as completely stable. The present result nevertheless appears
to be of considerable theoretical interest while it msy also be of practi-
cal interest if other cases of an apparent destebilizing nature of a favor-
able pressure gradient exist. It would therefore appear worthwhile to
investigate this problem further. For example, a recalculation of the
present resulis based on mean-flow solutions obtained independently of
those in references 16 and 17 may be worthwhile. Moreover, the extension
of the present results for stagnation and flat-plate flows to still more
highly cooled walls (T /Ty < 1/4) would be of interest to determine whether
the trends indicated in figure 9 continue as Ty/T; is decreased beyond
1/k. Finally, an analysis of the stabllity of low-speed flows with pres-
sure gredients other then stagnation flows, such as flows characterized

by up/w, =1t at (where a is a positive constant), over a highly
cooled wall might reveal whether the result obtained herein is peculiax
only to special types of flows such as stagnation flows. A calculation

of the stability of three-dimensional stagnation flows (corresponding to

m = 1/3) would also be of interest.

From figure 10 (cf. also table I), it is seen that, except for the
case of the uhcooled wall, normel fluid injection with a fixed wall tem-
perature ratio Tw/Tl hes an appreciably grester destabilizing effect
on flow over a flat plate than on a stagnation flow. This effect is
especially pronounced for the highly cooled well (Ty/T1 = 1/4) at the
high rate of £luld injection (fw = -1). Once again this can be largely
explained by referring to the velocity profilees in figure 12(b)

(Ty/T1 = l/h) where, for example, the considerable change in the flat-
plate veloclity profile as fy; changes from -1/2 to -1 can be clearly
seen. The stagnation profiles, on the other hand, tend to remsin similar
ag Ty varies from O to -1, regardless of the wall tempersture (cf.
figs. 12(a) and 12(b)). It is interesting, however, to note that, for

91n this connection, it may also be noted that the minlmum critical
Reynolds number based on main-stream reference conditions (Rb)min will

vary inversely as §2 for stegnation flows but inversely sas § for flat-
plate flows (cf. eq. (Bll)). Consequently, for the same value of (Rgi)
(Rb)min for stagnation flows would exceed that for flat-plate flows at

£ < 1. In fact, according to teble I, for the interesting case Ty /T; = 1/4
and f; =0, (Rb)min for the stagnetion flows will exceed that for flow

over a flat plate at & < 13,510/2%,900 or O0.543. -

min/K’
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an uncooled or only moderately cooled wall, the stabllity of the f£lat-
plate flows, in contrast with that of the stagnation flows, tends to
become relatively less and less sensitive to changes in the normal mass-
flow injection when the rate of the latter is high (ef. fig. 10). (This
appears, in part, to be due mathematically to the large negative values
of A for flet-plate flows with high injection rates, which tend to pre-
vent (Rai)mi from diminishing eharply (egs. (19) or (20)).

n

Effect of Coclant Temperature

For a fixed rate of mass-flow injection @(g), which corresponds
approximately to a fixed value of £y (for a given value of m &and a

fixed value of (), £, depends slightly on the wall temperature

ratio Ty/T1 (egs. (30) to (31b)), lowering the coolant temperature Ty
will lower the wall temperature T« This, as has just been seen, will
stabilize the boundaery layer by lncreasing the minimum critical Reynolds

number. An example of this effect is shown in figure 135, where, for s
fixed value of Fy{= -1), the minimum critical Reynolds number is given

as & function of the coolant temperature ratic Tj/Ty for both flat-
plate and stagnation flows.

It might also be of interest to calculate the stability of the
boundary lsyer for a fixed coolant temperature ratio T3 /Ty and & varying
rate of mass-flow injection. This has been carried out in reference 9 for
(low-speed) flow over a flat plate. It has been shown there that for a
fixed value of Ti/Tl there will be a value of the injection rate (essen-

tially fy) for which the minimum eritical Reynolds number will be a maxi-
mum. A similar calculation would be of interest for stagnation flows.
However, boundsry-layer solutions in addition to those tabulaeted in refer-
ences 16 and 17 would be required for this purpose. One possibility might
be to apply consistently the approximate solutlions in reference 30.

Comparison of Stability Criteris

The stability of all of the flows studied herein has heen calculsted
by means of equations (8) and (19). In view, however, of the quite recent
appearance of reference 23, a majority of the cases have been recalculated,
for comparison, on the basis of equations (10) and (20), which are given
in reference 23 as a modification, for greater accuracy, of equations (8)
and (19). Tt has already been seen that these two sets of equations are,
on the whole, essentially similar, especislly for low-speed flows and
moderate temperature changes within the boundary lsyer (cf. the section
entitled "Stability Criteria"). The results of the calculations based on
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equations (10) and (20) are shown in tables II(a) and II(b) and in fig-
ure 10. Filgure 10 indicates that, although some quantitative differences
occur, the conclusions based on the results of equations (8) and (19)
remain on the whole unchanged. It is, furthermore, significant to note,
from tebles II{a) and II(b), that the values of A calculated according
to equation (10) are essentially similar to those based on equation (8)
and that the calculated values of c¢, consequently remain on the whole
quite similar. (When |A| << 1, then the sctuasl numerical value of A,
whether it is positive or negative, will not have a great influence on
the stability calculations.)

It is noteworthy that for the stagnation flows studiled here the
absolute values of the profile stabllity parameter AN are all much
smaller than unity (cf. table II(b)) regardless of the wall temperature
ratio or of the megs-flow injection paremeter £« For the flow over a

flat plate, however, relatively high negative values of A occur when
the rate of mass-flow injection is high (cf. table II(a)). This is
readily explained by a glance at the various velocity profiles in fig-
ures 12(a) and 12(b) and a comparison of thei with figure 6 (cf. also
the sectlon entitled "Stability Criteria"). The velocity profiles for
the flat-plate flows at £, = -1 are thereby readily seen to be asso-

ciated with high negative values of A.
CONCLUSIONS

The minimum critical Reynolds number as & function of the wall tem-
perature and the normal mess-flow injection has been calculated for the
leminar boundary layer over a trenspiration-cooled wall maintained at a
uniform temperature in the low-speed, but compressible, flow over a flat
plate and in the immediate wvicinity of a two-dimensional forward stagna-
tlon point. From these results, the following maln conclusions have been
drawn:

(1) For a given rate of mass-flow injection, cooling of the wall
stabilizes the flow by increasing the minimum critical Reynolds number.
This effect 1s enhanced at the lower well temperatures. At a fixed wall
temperature, an increase of normal mass-flow injection destabilizes the
leminer boundary layer by decreasing the minimum critical Reynolds number.
The net effect of simultaneous cooling of the wall end normel fluld injec-
tion can be readily seen from the results obtained herein by comparing
the minimum critical Reynolds numbers for thils flow wlth those for flow
over an uncooled .impermeable wall. In most, though not all, of the partic-~
ular cases calculated herein, the net effect was found to be stabilizing.

(2) In most of the cases, the favorable pressure gradient inherent
in the stagnetion flows has an apprecieble stabllizing effect on the



NACA TN 4037 . 31

laminar boundary layer. This effect is especially pronounced at the
high injection rates regasrdless of the wall temperature and over an
uncooled or only slightly cooled weall regardless of the injection rate.

(3) Except for the case of large rates of mess-flow injection,
cooling of the wall, with a fixed rate of normal mass-flow injection, has
a considerably greater stabilizing effect on the flow over a flat plate
than on stagnation flows. At low ratlos of wall temperature to free-stream
temperature, in fact, the minimum critical Reynolds numbers for stagnation
flows will consequently not be higher than that for the corresponding flow
over a flat plate. Thus, the stabilizing effect of the favorable pressure
gradient in stegnation flows is greatly diminished, and even eliminated
or reversed, at low ratlos of wall to free-stream temperature and simul-
taneous zero or low rates of mess-flow injection. In view of this some-
what unexpected result, it would be of interest to investigate the sta-
billity of stagnation flows. over still more highly cooled walls and to
investigate the stabllity of other types of flows wlth pressure gradients
at low local speeds over a highly cooled wall.

(4) Except for the case of an uncooled or very slightly cooled wall,
normel fluld injection with a flxed wall temperature has a considerably
greater destabilizing effect on flow over a flat plate than on a stagna-
tion flow. This effect was found to be especially pronounced for the
highly cooled wall at the high rates of fluid injection calculated herein,

(5) For a fixed rate of mess-flow injection, lowering the coolant
temperature will lower the wall temperature and hence will stabilize the
boundary layer by increasing the minimum critical Reynolds number.

(6) The veloclty profiles for flow over a flat plate with high rates
of mass-flow injection at the wall are of the type which lead to relatively
large negative values of a stabllity parameter A. The approximate sta-
bility criteria have been slightly modified herein for such cases.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., November 16, 1955.
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APPENDIX A

COMPARTSON OF EGQUATIONS (8) AND (10) FOR BOUNDARY-LAYER

PROFILE PARAMETER A(ec)

A qualitative comparison of equations (8) and (10) for A(c) can
be made by expanding the velocity profile w = ufu; about the critical

layer w=c (or ¥y =ye). Thus, let
w" 2
w=c+wc‘(y-yc)+-2-?—(y-yc) .o . (A1)

where a prime indicates J/Jdy. To satisfy the condition u =0 at
¥y = 0, 1%t is necessary, according to equation (Al), that

W 2
c-wc'yc+§§:’—yc -+ e s=0 (a2)

Moreover, according to equation (Al),

f mdyf ot -t e )

where § = Yo = ¥ Applying the binomial expansion in equation (A3)
yields

S (o) o - - B 252 - By My 2L

(Ak)

From equation (Al),

w' =W =W Yt . (.A5).

w c

Hence, when v/v ~ 1 1in the region 0 £ ¥ € ¥., equation (lO) yields
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-—C—'W'c + ¢ o o = 1L (A6)

From equation (A2),

t 1
We Ve Ve

- —c-—yc=l+——_2c - e e = (AT)

Substitution for (wc'yc /c) into equation (A6) ylelds, to the second
power of Y.,

: Re) =B 5.2+. .. (a8)

- With the use of equstions (A5) and (AT), equation (8) ylelds the
following expression for 7\(c), to the second power of Ya.:

Ae) =-3 Ty 2+ ... (49)

Equations (A8) and (A9) show that, to second powers of y (and
Yo)s equations (8) and (10) with v constant yleld the seme results for

A(c) except for a slight difference in the numerical factors. Thus, it
is seen that A and A depend on substantially similar properties of
the velocity profiles and will both be of the same order of magnitude.

If temperature changes within the boundary layer are taken into
account and it is assumed that

V/vy = Vo /vy + (v/vl)c‘(y - yc) e v e (410)

then equation (A9) remeins unchanged, while equation (A8) becomes

- Vol vo!
- 7\(0) =——c—-(2W'c" + o e s + WC. vc— + s ') (A:L:L)
oe ¢
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If v'> 0, a8 will be the case for low-speed flows with T, /T, <1,
then the v terms in equation (10) will tend to make N algebraically
less then A. This will tend to incresse G, (A) (ef. fig. 5) or to

decrease Jpin &nd hence to decrease cge
In cases for which |A| << 1 (e.g., |A| € 0.02), 1t will be found

that the stebility criteria tend to be relatively insensitive to the
actual numerical value of A.
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APPENDIX B
CAICUIATION OF MINIMUM CRITICAL REYNOIDS NUMBER

In the solutions of references 16 and 17, the functions £, £,
£, £™, 3§, d', and 3" are tabulated, for any given case, as func-
tions of 1, where 17 1s defined by equation (26) in conjunction with
equation (25). Primes denote here derivetives with respect to 1. The
functions f and 9 are related to the veloclty and temperature pro-
files in accordance with the relations

Eui(“) = f'(n)[l + (%—wl— - )'8] (81)

o,y Ty T
ﬁ(n) = ﬁ + (1 - -T%)ﬂ(n) (82)

From equations (Bl) and (B2) it follows that the derivatives of the

velocity and temperature profiles can be calculated by means of the
relations

~

(&1—1)' =" + (% - )(f"a + £191)

1" Tl
(-1;1_) = £" + (T— - l)(f‘“-ﬁ + 2f"91 & £i8M)

W
T
Ty

hd

(83)

-3

Since the expression for J(c), ag given by equation (5), is inde-
pendent of the boundary-layer length L, the differentiations indicated
in equation (5) have been carried out with respect to 1. Similarly,

in expressions (8) and (10) for A and }, which are also independent
of L, y/L has been chosen to be 1g. Thus,

SN,
|

Ale) = (ww),' J& -1 (B4)
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Moreover, since in accordance with equations (27a) and (28),

14w

v/vy = (T/7) (85)
equation (10) becomes
ke
- 3 wjuy ), (T Me
Mo - 3 B ) [ (=6)

where o = 0.7.

The expressions on either side of equations (19) and (20) do depend
on the boundary-layer length L. For the present calculations, the
length I has been chosen in these eguations as the momentum thickness
;. From equations (26) end (35) it follows that

1 = K(y/81) (BT)
Thus, equations (19) and (20), in conjunction with eguation (B5), yield,

respectively, the following expressions for the minimum critical Reynolds
number based on the momentum thickness:

() 1o gd @) B (e ), ] @lm) @ - 00)

(Fo1) s = 1 b . 5 2 g2
“min  co (u/ul)cOl (1 + Xco) [l - M7 (1 - ep) ]
(B8)
N B GV M G P G
R&i)mn RNy ' 51112 (B9)

I = 32 2
€o (l-l-?\co) [l-Ml (1 = <)
In the present calculations M; = 0.

The minimum critical Reynolds numbers based on reference conditions
(at point b) and the main-stream characteristic length 1 can be obtained
from the results of equations (B8) and (B9) by using expression (35) for
8;. Thus, from equation (35) it follows that

ux  [Res\2[ vy
v_l’l" = <‘f{i) (W,) (810)
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With & =x/1, vy =1, and u; = wg", equation (B10) in conjunction
with equation (B5) ylelds

2 NET
1 [ T
(o™ = (3, = (3.0 () 2

From equations (B8) or (B9) and (B1ll) it follows that (Rb)min is inde-
pendent of the momentum-thickness factor K.



38

10.

ll.

NACA TN LO37
REFERENCES

Morduchow, Morris: ILeminar Separatlion Over a Transpiration—éooled
Surface in Compressible Flow. NACA TN 3559, 1955.

Gazley, Cerl, Jr.: Boundary-Layer Stebility and Trensition in Sub-
sonic and Supersonic Flow. Jour. Aero. Sci., vol. 20, no. 1, Jan.

1953, pp. 19-28.

Morduchow, Morris: Analysis and Calculetion by Integral Methods of
Laminar Compressible Boundary Layer With Heat Transfer and With and
Without Pressure Gradient. NACA Rep. 1245, 1955.

Ulrich, A.: Dile Stabllitdt der laminaren Reibungsschicht an der ebenen
Platte mit Absaugen und Ausblasen. U. M, 2044, Deutsche Luftfahrt-
forschung, June 11, 1943,

Ulrich, A.: Dle Stebilitiét der laminaren Relbungsschicht an der ebenen
Platte mit homogener Absaugung. U. M. 2033, Deutsche Luftfahrt-~
forschung, Nov. 1, 1943,

Hahneman, Elizsbeth, Freeman, J. C., and Finston, M.: Stabllity of
Boundary Layers and of Flow in Entrance Section of a Channel., dJour.
Aero. Seci., vol. 15, no. 8, Aug. 1948, pp. 493-4o6.

Schlichting, H., and Bussman, K.: Exakte IL¥sungen fiir die laminare
Grenzschicht mit Absaugung und Ausblasen. Schr., Deutsche Akad.
Luftfahrtforschung, Bd. 7B, Heft 2, 1943, pp. 25-69.

Iglisch, R.: Exekte Berechnung der lsminaren Grenzschicht an der
L&ngangestrtmten ebenen Platte mit homogener Absaugung. Schr.,
Deutsche Akad. Luftfahrtforschung, Bd. 8B, Heft 1, 19hk.
(Aveilable in English translation as NACA T 1205.)

Iees, lester: Stability of the Laminar Boundary Leyer With Injection
of Cool Gas at the Wall. Aero. Eng. Ieb, Rep. 139, Princeton Univ.,
May 20, 1948.

Libby, Paul A., lew, Henry G., and Romsno, Frank J.: On the Stability
of & Iaminar Compressible Boundary layer Over a Flat Plate Subject to
Uniform Suction and Injection. PIBAL Rep. 133, Polytechic Inst. of

Brooklyn, Oct. 15, 1948,

Low, George M.: The Compressible Laminar Boundary Layer With Fluid
Injection. NACA TN 340k, 1955. ' B



NACA TN 4037 39

12.

13.

1k,

15.

16.

17,

13.

22.

23.

Libby, Paul A., Morduchow, Morris, and Bloom, Martin: Critical
Study of Integral Methods in Compressible Iaminar Boundsry layers.
NACA TN 2655, 1952.

Van Driest, E. R.: Calculation of the Stability of the laminar
Boundary Iayer in a Compressible Fluid on a Flat Plate With Heat
Transfer. Jour. Aero. Sei., vol. 19, no. 12, Dec. 1952, pp. -801-812,
828,

Bloom, Mertin: The Effect of Surface Cooling on Iaminar Boundary-
layer Stability. Readers' Forum, Jour. Aero. Sei., vol. 18, no. 9,
Sept. 1951, pp. 635-636.

Tetervin, Neal, and Ievine, David A.: A Study of the Stabllity of
the Laminer Boundary Iayer as Affected by Changes in the Boundary-
Layer Thickness in Regions of Pressure Gradient and Flow Through
the Surface., NACA TN 2752, 1952.

Brown, W. Byron, and Donoughe, Patrick L.: Tables of Exact Laminsr-
Boundary-Layer Solutions When the Well Is Porous and Fluid Properties
Are Variable. NACA TN 2k79, 1951.

Brown, W. Byron, and ILilvingood, John N. B.: Solutions of leminar-
Boundary-Ilayer Equations Which BResult in Specific~Weight-Flow Pro-
files Locally Exceeding Free-Stream Values. NACA TN 2800, 1952.

Lin, C. C.: On the Stability of Two-Dimensional Parallel Flows.
Part I, Quart. Appl. Math., vol. ITII, no. 2, July 1945, pp. 117-142;
Part II, vol. III, no. 3, Oct. 1945, pp. 218-23k4; end Part IIT,
vol., III, no. 4, Jan. 1946, pp. 277-301.

Iees, lester, and Lin, Chia Chao: Investigation of the Stabllity of
the Laminer Boundary Layer in a Compressible Fluld. NACA TN 1115,

1946.

Ieces, Lester: The Stebility of the Laminar Boundery Iayer in a Com~
pressible Fluid. NACA Rep. 876, 1947. (Supersedes NACA TN 1360.)

Bloom, Martin: Further Comments on "The Effect of Surface Cooling
on Laminar Boundary-layer Stability." Readers' Forum, Jour. Aero.
Sci., vol. 19, no. 5, May 1952, p. 359.

Bloom, Martin: On the Calculation of ILaminar Boundary-ILayer Stability.
Readers' Forum, Jour. Aero. Scl., vol. 21, no. 3, Mar. 1954,
pp. 207-210.

Dunn, D. W., and Lin, C. C.: On the Stability of the Laminar Boundary
Isyer in a Compressible Fluid. Jour. Aero. Sci., vol. 22, no. T,
July 1955, pp. ¥55-LTT.



40

2k,

25-

26.

2T.

28.

29.

30-

31-

32,

33

BJ'I".

35

NACA TN L037

Pretsch, J.: Die Stablilit#t der Laminarstrdmung bei Druckgefille
und Druckanstieg. Forschungsbericht Nr. 1343, Deutsche
Iuftfehrtforschung, 1941.

Isurmamn, J. A.: BStablility of the Compressible Laminar Boundary
Iayer With an External Pressure Gradient. Rep. 48, College of
Aero. (Cranfield), Sept. 1951.

Cheng, Sin-I: On the Stability of Laminsr Boundary Isyer Flow.
Quart. App. Math., vol. XI, no. 3, Oct. 1953, pp. 346-350.

Squire, H. B.: On the Stability for Three-Dimensional Disturbances
of Viscous Fluid Flow Between Parallel Walls. Proc. Royal Soc.
of ILondon, ser. A., vol. 142, no. 847, Nov. 1933, pp. 621-628.

Dunn, D, W., and Lin, C. C.: The Stability of the Laminsr Boundary
Layer in & Compressible Fluild for the Case of Three-Dimensional
Disturbances. Readers' Forum, Jour. Aero. Sci., vol. 19, no. T,

July 1952, p. 491.

Iessen, Martin: On the Stability of Plane Parallel laminar Flows
to Two-~ and Three-Dimensional Disturbences. Readers' Forum, Jour.
Aerc. Sci., vol. 19, no. 6, June 1952, pp. 431-432,

Morduchow, Morris: On Heat Transfer Over a Sweat-Cooled Surface in
Laminar Compressible Flow With a Pressure Gradlent. Jour. Aero.
Sci., vol. 19, no. 10, Oct. 1952, pp. TO5-T12.

Morduchow, Morris, and Clarke, Joseph H.: Method for Calculation of
Compressible Leminar Boundary-lLayer Charecteristics in Axial Pres-
sure Gradlent With Zero Heat Transfer. NACA TN 2784, 1952.

Eckert, E. R. G.: Heat Transfer and Tempersture Profiles in Leminsar
Boundery Layers on & Sweat-Cooled Wall. A.A.F. Tech. Rep. 564§,
Air Material Command, Nov. 1947.

Prendtl, L., and Tietjens, O. G. (L. Rosehead, trans.): Fundamentals
of Hydro- and Aercmechenics. McGraw-Bill Book Co., Inc., 1934,
Pp. 162-166. '

Falkner, V. M., and Skan, Sylvia W.,: Some Approximate Solutions of
the Boundary layer Equations., R. & M. No. 131k, British A.R.C.,

1930.

Brown, W. Byron: Exact Solutions of the Laminar Boundary Layer
Equetions for a Porous Plate With Variable Fluid Properties and
a Pressure Gradient in the Main Stream. Presented at First U. S.
Net. Cong. of Appl. Mech. (Chicago), June 11-16, 1951, pp. 843-852.



TABLE XI.- MINIMIM CRITICAL REYROIDS NUMBERS AS FUNCTIONS OF WATL

TEMPERATURE AND RATE OF NOEMAL MASS-FLOW INJECTION

N9

LEok NI VOWN

Btagnation flow, Flow over flat plate,
5, ul/u;b = g ul/ub =1
. f,.
iy hd
£2 £
(R, (%), (%) (%)
0 4,20 x 109 21.0 x 107 0.10k x 107 0.00248 x 107
~1/2 2.43 L.o7 .0225 0000750
-1 1.36 1.13 0151 0000197
0 22,4 339 12,5 31.2
% -1/2 8.62 31.3 2 00754
=1 2.49 1.53 041k .00012k
) 159 13,510 378 24,900
% -1/2 58.0 1,023 85.0 793
-1 5.37 k.55 .100 000615

H
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TABLE IT.- DETAILS OF STABILITY CALCULATIONS
(a) Flow over a flat plate
m, . Based on eqs. (8) and (19) Based on egs. {10} and (20)
T W
. 7\00 €o ( Rﬁi )min ‘Rco o ( Rbi)mj_n
0 0.015 0.415 20,104 x 103 0.011 0.413 0.100 x 103
1 -1/2 ~.226 548 .0225 -.196 ST .0232
-1 ~.T0% .620 L0151 -.66% .622 .0192
0 0.035 0.114 12.5
3 -1/2 -.098 279 2l
-1 - 702 159 Ok
0 0.039 B0.0367 378 -0.009 0.034 486 _
% -1/ -.012 b okT3 85.0 -.050 .ol 108
-1 - 735 319 .100 ~.T6 312 - 0665
(o) Flow near a forward stagnation point
. Based on egs. (8) end (19) Based on egs. (10) end (20}
Tu £ = po
Ty Ao o (Rﬁi)min 7‘c° o ( R5i)m1n
0 0.082 0.210 L.20 x 103 0.068 0.207 3.99 x 105
1 -1/2 .080 .229 2.43 .055 .223 2.7h
-1 068 .258 1.36 .58 255 1.36
o 0.035 0.110 22.4
2 ~1f2 <055 132 8.62
-1 o6 A7 2.9
0 0.049 ©o.0lk90 159 ~0.003 0.0k 238
11; -1/2 038 b,0601 58.0 -.005 059 59.0
-1 .025 102 5,37 -.01h 0% 6.52

a"Lll'ln.e accurate value of (Rai)min for this case, besed on mn exact calculation of neutral
stability curve, without approximate criteria used herein, is 150 to 162 (refs. 20 and 18, respec~

tively).

Values based on particular simplified approximate criteria as glven by eq.

(21) range

from 180 to 195 (refs. 12 end 20, respectively), which are tog high. Velue obtained herein is
evidently too low, These differences from exact value, however, are ususlly not regarded as very
It is important to note thet in all of these calculatlions

slgnificant in stabllity calculations.

(i.e., refs. 12, 18, 20, and present report} for this case, value of ¢, is practically same.
PRecause of closeness of ¢, G0 zero in these cases, determinstfon of ¢, ~was based on

expanding velocity and temperature profiles in a Taylor series ebout origin, using tebulated values
of derivetives a% origin and obteining values of additional higher derivetives from governing
ordinary differential equations. "'
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Figure 1.~ Typlcal curve of neutral stsbility.
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Figure 2.- Typlcal curve of G(z,\) versus =z for a fixed value of A.
Numbers indicate: 1, two values of 2z for chosen value of c¢ sat-
isfying equation (6); 2, one value of 2z for chosen value of c

satisfying equation (6); and 3, no values of z for chosen value
of c¢ satisfying equation (6)
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Figure 6.- Geometric significance of boundary-layer profile stability
perameter A(e) according to equation (8). (u/ul)W = 1/ten 7.;

tan
(y/L)o/c = tan 7; therefore, N = tTa.n—:')%; - 1.
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Figure 7.~ Determination of ¢, fTor several different cases.
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Figure 8.~ Distribution of normal mass-flow injection at wall.
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Figure 9.- Minimum critical Reynolds number, based on momentum thickumess,
as function of wall temperature for various rates of normsl fluid

injection.
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wall temperature for various rates of normsl fluid injection.
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Figure 12.- Concluded.
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